Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
J Med Virol ; 95(5): e28805, 2023 05.
Article in English | MEDLINE | ID: covidwho-20243153

ABSTRACT

HH-120, a recently developed IgM-like ACE2 fusion protein with broad-spectrum neutralizing activity against all ACE2-utilizing coronaviruses, has been developed as a nasal spray for use as an early treatment agent to reduce disease progression and airborne transmission. The objective of this study was to evaluate the safety and efficacy of the HH-120 nasal spray in SARS-CoV-2-infected subjects. Eligible symptomatic or asymptomatic SARS-CoV-2-infected participants were enrolled in a single-arm trial to receive the HH-120 nasal spray for no longer than 6 days or until viral clearance at a single hospital between August 3 and October 7, 2022. An external control was built from real-world data of SARS-CoV-2-infected subjects contemporaneously hospitalized in the same hospital using a propensity score matching (PSM) method. After PSM, 65 participants in the HH-120 group and 103 subjects with comparable baseline characteristics in the external control group were identified. The viral clearance time was significantly shorter in participants receiving the HH-120 nasal spray than that in subjects of the control group (median 8 days vs. 10 days, p < 0.001); the difference was more prominent in those subgroup subjects with higher baseline viral load (median 7.5 days vs. 10.5 days, p < 0.001). The incidence of treatment-emergent adverse events and treatment-related adverse events of HH-120 group were 35.1% (27/77) and 3.9% (3/77), respectively. All the adverse events observed were mild, being of CTCAE grade 1 or 2, and transient. The HH-120 nasal spray showed a favorable safety profile and promising antiviral efficacy in SARS-CoV-2-infected subjects. The results from this study warrant further assessment of the efficacy and safety of the HH-120 nasal spray in large-scale randomized controlled clinical trials.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Nasal Sprays , SARS-CoV-2 , Cohort Studies , Propensity Score , Immunoglobulin M
2.
J Med Virol ; 95(5): e28806, 2023 05.
Article in English | MEDLINE | ID: covidwho-2327389

ABSTRACT

Intranasal (i.n.) vaccines can induce mucosal and systemic immunity against respiratory pathogens. Previously, we demonstrated that the recombinant vesicular stomatitis virus (rVSV)-based COVID-19 vaccine rVSV-SARS-CoV-2, with poor immunogenicity via the intramuscular route (i.m.), is more suitable for i.n. administration in mice and nonhuman primates. Here, we found that the rVSV-SARS-CoV-2 Beta variant was more immunogenic than the wild-type strain and other variants of concern (VOCs) in golden Syrian hamsters. Furthermore, the immune responses elicited by rVSV-based vaccine candidates via the i.n. route were significantly higher than those of two licensed vaccines: the inactivated vaccine KCONVAC delivered via the i.m. route and the adenovirus-based Vaxzevria delivered i.n. or i.m. We next assessed the booster efficacy of rVSV following two i.m. doses of KCONVAC. Twenty-eight days after receiving two i.m. doses of KCONVAC, hamsters were boosted with a third dose of KCONVAC (i.m.), Vaxzevria (i.m. or i.n.), or rVSVs (i.n.). Consistent with other heterologous booster studies, Vaxzevria and rVSV elicited significantly higher humoral immunity than the homogenous KCONVAC. In summary, our results confirmed that two i.n. doses of rVSV-Beta elicited significantly higher humoral immune responses than commercial inactivated and adeno-based COVID vaccines in hamsters. As a heterologous booster dose, rVSV-Beta induced potent, persistent, and broad-spectrum humoral and mucosal neutralizing responses against all VOCs, highlighting its potential to be developed into a nasal-spray vaccine.


Subject(s)
COVID-19 , Viral Vaccines , Humans , Animals , Mice , COVID-19 Vaccines , Rodentia , Nasal Sprays , ChAdOx1 nCoV-19 , COVID-19/prevention & control , SARS-CoV-2/genetics , Vesiculovirus , Antibodies, Viral , Antibodies, Neutralizing
3.
Int J Pharm ; 640: 123035, 2023 Jun 10.
Article in English | MEDLINE | ID: covidwho-2313531

ABSTRACT

Cannabidiol (CBD) has a number of biological effects by acting on the cannabinoid receptors CB1 and CB2. CBD may be involved in anti-inflammatory processes via CB1 and CB2 receptors, resulting in a decrease of pro-inflammatory cytokines. However, CBD's poor aqueous solubility is a major issue in pharmaceutical applications. The aim of the present study was to develop and evaluate a CBD nasal spray solution. A water-soluble CBD was prepared by complexation with ß-cyclodextrin (ß-CD) at a stoichiometric ratio of 1:1 and forming polymeric micelles using poloxamer 407. The mixture was then lyophilized and characterized using FT-IR, DSC, and TGA. CBD-ß-CD complex-polymeric micelles were formulated for nasal spray drug delivery. The physicochemical properties of the CBD-ß-CD complex-polymeric micelle nasal spray solution (CBD-ß-CDPM-NS) were assessed. The results showed that the CBD content in the CBD-ß-CD complex polymeric micelle powder was 102.1 ± 0.5% labeled claim. The CBD-ß-CDPM-NS was a clear colorless isotonic solution. The particle size, zeta potential, pH value, and viscosity were 111.9 ± 0.7 nm, 0.8 ± 0.1 mV, 6.02 ± 0.02, and 12.04 ± 2.64 cP, respectively. This formulation was stable over six months at ambient temperature. The CBD from CBD-ß-CDPM-NS rapidly released to 100% within 1 min. Ex vivo permeation studies of CBD-ß-CDPM-NS through porcine nasal mucosa revealed a permeation rate of 4.8 µg/cm2/min, which indicated that CBD was effective in penetrating nasal epithelial cells. CBD-ß-CDPM-NS was tested for its efficacy and safety in terms of cytokine production from nasal immune cells and toxicity to nasal epithelial cells. The CBD-ß-CDPM-NS was not toxic to nasal epithelial at the concentration of CBD equivalent to 3.125-50 µg/mL. When the formulation was subjected to bioactivity testing against monocyte-like macrophage cells, it proved that the CBD-ß-CDPM-NS has the potential to inhibit inflammatory cytokines. CBD-ß-CDPM-NS demonstrated the formulation's ability to reduce the cytokine produced by S-RBD stimulation in ex vivo porcine nasal mucosa in both preventative and therapeutic modes.


Subject(s)
COVID-19 , Cannabidiol , beta-Cyclodextrins , Animals , Swine , Cannabidiol/chemistry , Micelles , Nasal Sprays , SARS-CoV-2 , Spectroscopy, Fourier Transform Infrared , Cytokine Release Syndrome , beta-Cyclodextrins/chemistry
4.
Indian J Otolaryngol Head Neck Surg ; 74(Suppl 2): 3283-3292, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2317419

ABSTRACT

To assess the virucidal effect of povidone iodine (PVP-I) on severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) located in the nasopharynx and suitable dose-formulation for nasal application were the purpose of this clinical trial. This single-center, open-label randomized clinical trial with a 7-arm parallel-group design was conducted in Dhaka Medical College (DMC) Hospital. A total of 189 reverse transcription-polymerase chain reaction (RT-PCR)-confirmed SARS CoV-2 positive cases aged 12-90 years with symptoms was sequentially enrolled following randomization. Nasopharyngeal clearance of SARS-CoV-2 was tested against PVP-I nasal irrigation (NI) at diluted concentrations of 0.4%, 0.5% and 0.6%, and PVP-I nasal spray (NS) at diluted concentrations of 0.5% and 0.6%. All groups were compared to the corresponding controls (distilled water). Written informed consent was ensured before participation. All procedures were conducted in after ethical clearance from the Ethical Review Board and in accordance with the Declaration of Helsinki. Viral clearance in a repeat RT-PCR (qualitative) was the primary outcome, and occurrence of any adverse event following administration of testing drug was considered as the secondary outcome. Analysis was performed using SPSS (Version 26). All cases were randomized into seven groups and each group consists of 27-patient. Mean age of the cases 43.98 ± 12.67 years (SD). All strength of NI were effective in nasopharyngeal clearance compared to the control (0.4%, p = 0.006; 0.5%, p < 0.001; and 0.6%, p = 0.018). Similarly, all strength of the NS is also effective than control (0.5%, p = < 0.001; and 0.6%, p ≤ 0.001). Highest nasopharyngeal clearance was observed in patients using 0.5% NI (n = 25, 92.6%, p = 0.018). Nasal irritation was the single most adverse event recorded in this trial and found in two patients using 0.4%, and 0.6% PVP-I NI, respectively. Both PVP-I NS and NI are effective for nasopharyngeal clearance in-vivo. However, further community trials are needed to repurpose these solutions as preventive agents against SARS-CoV2. Ethical clearance memo no ERC-DMC/ECC/2020/93. Trial registration NCT Identifier number NCT04549376. Supplementary Information: The online version contains supplementary material available at 10.1007/s12070-022-03106-0.

5.
J Clin Immunol ; 43(5): 862-864, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2288933
6.
Int J Mol Sci ; 24(4)2023 Feb 12.
Article in English | MEDLINE | ID: covidwho-2259897

ABSTRACT

Nasal sprays are medical devices useful for preventing infection and the subsequent spread of airborne pathogens. The effectiveness of these devices depends on the activity of chosen compounds which can create a physical barrier against viral uptake as well as incorporate different substances with antiviral activity. Among antiviral compounds, UA, a dibenzofuran derived from lichens, has the mechanical ability to modify its structure by creating a branch capable of forming a protective barrier. The mechanical ability of UA to protect cells from virus infection was investigated by analyzing the branching capacity of UA, and then the protection mechanism in an in vitro model was also studied. As expected, UA at 37 °C was able to create a barrier confirming its ramification property. At the same time, UA was able to block the infection of Vero E6 and HNEpC cells by interfering with a biological interaction between cells and viruses as revealed also by the UA quantification. Therefore, UA can block virus activity through a mechanical barrier effect without altering the physiological nasal homeostasis. The findings of this research could be of great relevance in view of the growing alarm regarding the spread of airborne viral diseases.


Subject(s)
Antiviral Agents , Antiviral Agents/pharmacology , Cell Survival
7.
Pharmacol Rep ; 75(2): 249-265, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2254448

ABSTRACT

Clinical management of COVID-19 has been a daunting task. Due to the lack of specific treatment, vaccines have been regarded as the first line of defence. Innate responses and cell-mediated systemic immunity, including serum antibodies, have been the primary focus of practically all studies of the immune response to COVID-19. However, owing to the difficulties encountered by the conventional route, alternative routes for prophylaxis and therapy became the need of the hour. The first site invaded by SARS-CoV-2 is the upper respiratory tract. Nasal vaccines are already in different stages of development. Apart from prophylactic purposes, mucosal immunity can be exploited for therapeutic purposes too. The nasal route for drug delivery offers many advantages over the conventional route. Besides offering a needle-free delivery, they can be self-administered. They present less logistical burden as there is no need for refrigeration. The present article focuses on various aspects of nasal spray for eliminating COVID-19.


Subject(s)
COVID-19 , Vaccines , Humans , Nasal Sprays , SARS-CoV-2 , Administration, Intranasal
8.
China CDC Wkly ; 5(10): 218-222, 2023 Mar 10.
Article in English | MEDLINE | ID: covidwho-2281340

ABSTRACT

What is already known about this topic?: The active ingredient of the SA58 Nasal Spray is a broad-spectrum neutralizing antibody with a high neutralizing capacity against different Omicron sub-variants in vitro studies. What is added by this report?: This study demonstrated the safety and effectiveness of SA58 Nasal Spray against coronavirus disease 2019 (COVID-19) infection in medical personnel for the first time. What are the implications for public health practice?: This study provides an effective approach for the public to reduce their risk of COVID-19 infection. The findings of this research have the potential to significantly reduce the risk of infection and limit human-to-human transmission in the event of a COVID-19 outbreak.

9.
Laryngoscope ; 132(11): 2089-2095, 2022 11.
Article in English | MEDLINE | ID: covidwho-2288315

ABSTRACT

OBJECTIVES/HYPOTHESIS: To determine the effect of povidone-iodine (PVP-I) nasal sprays on nasopharyngeal (NP) viral load as assessed by cycle threshold (Ct) on quantitative polymerase chain reaction (qPCR) of SARS-CoV-2 in outpatients. STUDY DESIGN: Three arm, triple blinded, randomized, placebo-controlled clinical trial. METHODS: Participants were randomized within 5 days of testing positive for COVID-19 to receive nasal sprays containing placebo (0.9% saline), 0.5% PVP-I, or 2.0% PVP-I. NP swabs for qPCR analysis were taken at baseline, 1-hour post-PVP-I spray (two sprays/nostril), and 3 days post-PVP-I spray (20 sprays/nostril). Symptom and adverse event questionnaires were completed at baseline, day 3, and day 5. University of Pennsylvania Smell Identification Tests (UPSIT) were completed at baseline and day 30. RESULTS: Mean Ct values increased over time in all groups, indicating declining viral loads, with no statistically significant difference noted in the rate of change between placebo and PVP-I groups. The 2.0% PVP-I group showed statistically significant improvement in all symptom categories; however, it also reported a high rate of nasal burning. Olfaction via UPSIT showed improvement by at least one category in all groups. There were no hospitalizations or mortalities within 30 days of study enrollment. CONCLUSIONS: Saline and low concentration PVP-I nasal sprays are well tolerated. Similar reductions in SARS-CoV-2 NP viral load were seen over time in all groups. All treatment groups showed improvement in olfaction over 30 days. These data suggest that dilute versions of PVP-I nasal spray are safe for topical use in the nasal cavity, but that PVP-I does not demonstrate virucidal activity in COVID-19 positive outpatients. LEVEL OF EVIDENCE: 2 Laryngoscope, 132:2089-2095, 2022.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Nasal Sprays , Povidone-Iodine/therapeutic use , Saline Solution , Viral Load
10.
Clin Infect Dis ; 2022 Jun 06.
Article in English | MEDLINE | ID: covidwho-2232561

ABSTRACT

BACKGROUND: SARS-CoV-2 VOCs, especially the Delta and Omicron variants, have been reported to show significant resistance to approved neutralizing monoclonal antibodies (mAbs) and vaccines. We previously identified a mAb named 35B5 that harbors broad neutralization to SARS-CoV-2 VOCs. Herein, we explored the protection efficacy of a 35B5-based nasal spray against SARS-CoV-2 VOCs in a small-scale clinical trial. METHODS: We enrolled 30 healthy volunteers who were nasally administrated with the modified 35B5 formulation. At 12, 24, 48 and 72 hours after nasal spray, the neutralization efficacy of nasal mucosal samples was assayed with pseudoviruses coated with SARS-CoV-2 Spike protein of the wild-type (WT), Alpha, Beta, Delta, or Omicron variants. RESULTS: The nasal mucosal samples collected within 24 hours after nasal spray effectively neutralized SARS-CoV-2 VOCs (including Delta and Omicron). Meanwhile, the protection efficacy was 60% effective and 20% effective at 48 and 72 hours after nasal spray, respectively. CONCLUSIONS: A single nasal spray of 35B5 formation conveys 24-hour effective protection against SARS-CoV-2 VOCs, including the Alpha, Beta, Delta, or Omicron variants. Thus, 35B5 nasal spray might be potential in strengthening SARS-CoV-2 prevention, especially in the high-risk population.

11.
Pharmaceutics ; 15(2)2023 Feb 09.
Article in English | MEDLINE | ID: covidwho-2236149

ABSTRACT

Hexedra+® is a nasal spray containing hydroxypropyl methylcellulose, beta-cyclodextrin, and usnic acid. It has been developed with the aim of reducing the risk of transmission of airborne viral infections, with particular reference to influenza and COVID-19. As part of the preclinical development of the product, we carried out a study on thirty male Wistar rats divided into three study groups and treated with Hexedra+, an alternative formulation containing a double concentration of usnic acid (0.015% instead of 0.0075%) or saline solution. Products were administered at the dose of 30 µL into each nostril, three times a day for seven consecutive days by means of a micropipette. By the end of the treatment period, no significant changes were observed in body weight. Histological examination of nasal mucosa and soft organs did not show any significant difference in the three study groups. Serum transaminase level remained in the normal limit in all the animals treated. The serum level of usnic acid was measured in order to assess the absorption of the molecule through the nasal mucosa. By the end of the study period, the usnic acid serum level was negligible in all the animals treated. In conclusion, the safety profile of Hexedra+ appears favorable in the animal model studied.

12.
Cell ; 2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-2130295

ABSTRACT

Pediatric SARS-CoV-2 vaccines are needed that elicit immunity directly in the airways as well as systemically. Building on pediatric parainfluenza virus vaccines in clinical development, we generated a live-attenuated parainfluenza-virus-vectored vaccine candidate expressing SARS-CoV-2 prefusion-stabilized spike (S) protein (B/HPIV3/S-6P) and evaluated its immunogenicity and protective efficacy in rhesus macaques. A single intranasal/intratracheal dose of B/HPIV3/S-6P induced strong S-specific airway mucosal immunoglobulin A (IgA) and IgG responses. High levels of S-specific antibodies were also induced in serum, which efficiently neutralized SARS-CoV-2 variants of concern of alpha, beta, and delta lineages, while their ability to neutralize Omicron sub-lineages was lower. Furthermore, B/HPIV3/S-6P induced robust systemic and pulmonary S-specific CD4+ and CD8+ T cell responses, including tissue-resident memory cells in the lungs. Following challenge, SARS-CoV-2 replication was undetectable in airways and lung tissues of immunized macaques. B/HPIV3/S-6P will be evaluated clinically as pediatric intranasal SARS-CoV-2/parainfluenza virus type 3 vaccine.

13.
Biomedicines ; 10(11)2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2116164

ABSTRACT

Airborne pathogens, including SARS-CoV-2, are mainly contracted within the airway pathways, especially in the nasal epithelia, where inhaled air is mostly filtered in resting conditions. Mucosal immunity developing after SARS-CoV-2 infection or vaccination in this part of the body represents one of the most efficient deterrents for preventing viral infection. Nonetheless, the complete lack of such protection in SARS-CoV-2 naïve or seronegative subjects, the limited capacity of neutralizing new and highly mutated lineages, along with the progressive waning of mucosal immunity over time, lead the way to considering alternative strategies for constructing new walls that could stop or entrap the virus at the nasal mucosa surface, which is the area primarily colonized by the new SARS-CoV-2 Omicron sublineages. Among various infection preventive strategies, those based on generating physical barriers within the nose, aimed at impeding host cell penetration (i.e., using compounds with mucoadhesive properties, which act by hindering, entrapping or adsorbing the virus), or those preventing the association of SARS-CoV-2 with its cellular receptors (i.e., administering anti-SARS-CoV-2 neutralizing antibodies or agents that inhibit priming or binding of the spike protein) could be considered appealing perspectives. Provided that these agents are proven safe, comfortable, and compatible with daily life, we suggest prioritizing their usage in subjects at enhanced risk of contagion, during high-risk activities, as well as in patients more likely to develop severe forms of SARS-CoV-2 infection.

14.
Pharmaceutics ; 14(11)2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2116070

ABSTRACT

Nasal spray vaccination is viewed as a promising strategy for inducing both mucosal and systemic protection against respiratory SARS-CoV-2 coronavirus. Toward this goal, a safe and efficacious mucosal adjuvant is necessary for the transportation of the antigen across the mucosal membrane and antigen recognition by the mucosal immune system to generate broad-spectrum immune responses. This study describes the immunological aspects of SARS-CoV-2 spike (S)-protein after being formulated with CpG oligodeoxynucleotides (ODNs) and squalene nanoparticles (termed PELC). Following intranasal delivery in mice, higher expression levels of major histocompatibility complex (MHC) class II and costimulatory molecules CD40 and CD86 on CD11c+ cells were observed at the draining superficial cervical lymph nodes in the CpG-formulated S protein group compared with those vaccinated with S protein alone. Subsequently, the activated antigen-presenting cells downstream modulated the cytokine secretion profiles and expanded the cytotoxic T lymphocyte activity of S protein-restimulated splenocytes. Interestingly, the presence of PELC synergistically enhanced cell-mediated immunity and diminished individual differences in S protein-specific immunogenicity. Regarding humoral responses, the mice vaccinated with the PELC:CpG-formulated S protein promoted the production of S protein-specific IgG in serum samples and IgA in nasal and bronchoalveolar lavage fluids. These results indicate that PELC:CpG is a potential mucosal adjuvant that promotes mucosal/systemic immune responses and cell-mediated immunity, a feature that has implications for the development of a nasal spray vaccine against COVID-19.

15.
Curr Pharm Des ; 2022 Oct 24.
Article in English | MEDLINE | ID: covidwho-2089589

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a major health concern worldwide and evolved into different variants. SARS-CoV-2 possesses a spike glycoprotein on its envelope that binds to the angiotensin-converting enzyme 2 (ACE-2) receptor of the host cell via the receptor-binding domain (RBD) in the upper respiratory tract. Since the SARS-CoV-2 virus variants changes the seveirity of dieseases and treatment scenarios, repurposing current medicines may provide a quick and appealing method with established safety features. The efficacy and safety of antiviral medicines against the coronavirus disease 2019 (COVID-19) have been investigated, and several of them are now undergoing clinical studies. Recently, it has been found that nitric oxide (NO) shows antiviral properties against SARS-CoV-2 and prevents the virus from binding to a host cell. In addition, NO is a well-known vasodilator and acts as an important coagulation mediator. With the fast-track development of COVID-19 treatments and vaccines, one avenue of research aimed at improving therapeutics is exploring different forms of drug delivery, including intranasal sprays and inhalation therapy. The nasal mucosa is more prone to be the site of infection as it is in more direct contact with the physical environment via air during inhalation and exhalation. Thus, the use of the exogenous nasal NO therapy via the intranasal route displays a distinct advantage. Therefore, the objective of this review is to summarize the relevant actions of NO via intranasal spray and inhalation delivery, its mechanism of action, and its use in the treatment of COVID-19.

16.
Int J Environ Res Public Health ; 19(19)2022 Sep 25.
Article in English | MEDLINE | ID: covidwho-2043751

ABSTRACT

Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is a global and evolving pandemic associated with heavy health and financial burdens. Considering the oral cavity as the major reservoir for SARS-CoV-2, a systematic review and meta-analysis were conducted to assess the efficacy of mouth rinses and nasal sprays in reducing the salivary viral load of SARS-CoV-2. All in vivo and in vitro studies that assessed the virucidal efficacy of mouth rinses and nasal sprays against SARS-CoV-2 and were published in the English language from December 2019 to April 2022 were considered for analyses. Special Medical Subject Headings terms were used to search Pubmed, Scopus, Embase Ovid, and Web of Science databases. The toxicological data reliability assessment tool (ToxRToool) was used to assess the quality of the included studies. Thirty-three studies (11 in vivo and 22 in vitro) were deemed eligible for inclusion in this analysis. Results of the pooled data showed that povidone-iodine is the most efficacious intervention in vivo in terms of reducing the SARS-CoV-2 salivary viral load, followed by chlorhexidine. The mean difference in the viral load was 86% and 72%, respectively. Similarly, povidone-iodine was associated with the highest log10 reduction value (LRV) in vitro, followed by cetylpyridinium chloride, (LRV = 2.938 (p < 0.0005) and LRV = 2.907 (p = 0.009), respectively). Povidone-iodine-based oral and nasal preparations showed favourable results in terms of reducing SARS-CoV-2 viral loads both in vivo and in vitro. Considering the limited number of patients in vivo, further studies among larger cohorts are recommended.


Subject(s)
COVID-19 , SARS-CoV-2 , Cetylpyridinium , Chlorhexidine , Humans , Mouthwashes/pharmacology , Nasal Sprays , Povidone-Iodine/pharmacology , Reproducibility of Results
17.
Infect Drug Resist ; 15: 5483-5494, 2022.
Article in English | MEDLINE | ID: covidwho-2043240

ABSTRACT

Purpose: Anosmia or hyposmia, with or without taste changes, are common symptoms that occur in SARS-CoV-2 infection and frequently persist as post-COVID-19 manifestations. This is the first trial to assess the potential value of using local ivermectin in the form of a mucoadhesive nanosuspension nasal spray to treat post-COVID-19 anosmia. Methods: It is a controlled, randomized trial. Participants were recruited from South Valley University Hospitals in Qena, Upper Egypt, from the ENT and Chest Diseases Departments and outpatient clinics. Patients with persistent post COVID-19 anosmia were randomly divided into two groups, the first group "ivermectin group" included 49 patients treated by ivermectin nanosuspension mucoadhesive nasal spray (two puffs per day). The second group included 47 patients "placebo group" who received saline nasal spray. Follow- up of anosmia [using Visual analogue scale (VAS)] in all patients for three months or appearance of any drug related side effects was done. Results: The mean duration of pre-treatment post COVID-19 anosmia was 19.5± 5.8 days in the ivermectin group and 19.1± 5.9 days in the placebo group,p˃0.05. Regarding the median duration of anosmia recovery, the ivermectin group recovered from post COVID-19 anosmia in 13 days compared to 50 days in the placebo group, p˂ 0.001. Following the first week of ivermectin nanosuspension mucoadhesive nasal spray therapy, the ivermectin group had a significantly higher percentage of anosmia recovery (59.2%) than the placebo group (27.7%), p˂ 0.01, with no significant differences in recovery rates between the two groups at 1, 2, and 3 months of follow up, p˃0.05. Conclusion: In the small number of patients treated, local Ivermectin exhibited no side effects. In persistent post-COVID-19 anosmia, it could be used for one week at the most as the treatment was extended to one, two and three months, with no difference in recovery compared to the placebo treatment. Trial Registration No: NCT04951362.

18.
Mol Genet Metab ; 137(1-2): 192-200, 2022.
Article in English | MEDLINE | ID: covidwho-2008189

ABSTRACT

Global COVID-19 pandemic is caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Continuous emergence of new variants and their rapid spread are jeopardizing vaccine countermeasures to a significant extent. While currently available vaccines are effective at preventing illness associated with SARS-CoV-2 infection, these have been shown to be less effective at preventing breakthrough infection and transmission from a vaccinated individual to others. Here we demonstrate broad antiviral activity of cysteamine HCl in vitro against major emergent infectious variants of SARS-CoV-2 in a highly permissible Vero cell line. Cysteamine HCl inhibited infection of wild type, alpha, beta, gamma, delta, lambda, and omicron variants effectively. Cysteamine is a very well-tolerated US FDA-approved drug used chronically as a topical ophthalmic solution to treat ocular cystinosis in patients who receive it hourly or QID lifelong at concentrations 6 times higher than that required to inhibit SARS CoV-2 in tissue culture. Application of cysteamine as a topical nasal treatment can potentially1) mitigate existing infection 2) prevent infection in exposed individuals, and 3) limit the contagion in vulnerable populations.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Pandemics , Cysteamine/pharmacology , Antiviral Agents/pharmacology , Ophthalmic Solutions
19.
GMS Hyg Infect Control ; 17: Doc13, 2022.
Article in English | MEDLINE | ID: covidwho-1974608

ABSTRACT

The German Society of Hospital Hygiene develops guidelines, recommendations and standard operation procedures on a voluntary basis, published on the DGKH-website (https://www.krankenhaushygiene.de/). The original German version of this recommendation was published in April 2022 and has now been made available to the international professional public in English. Evaluating the current data on the efficacy of virucidal gargle/mouthwash solutions and nasal sprays against SARS-CoV-2 in vitro and in clinical trials, conducted with preventive or therapeutic objectives, recommendations are given for the prevention of COVID-19. The following areas are considered: Protection of the community when regional clusters or high incidences of infection become knownProtection of the community at low risk of infectionPre-exposure prophylaxis for the protection of healthcare workersPost-exposure prophylaxis.

20.
Lancet Reg Health Southeast Asia ; 3: 100036, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1972241

ABSTRACT

Background: Additional outpatient therapies which are readily accessible will be essential to reduce COVID-19 illness progression in high risk individuals. Especially as the virus continues to mutate with greater transmissibility despite increased global vaccination. Methods: A randomized, double-blind, multicentre, parallel group, placebo-controlled phase III clinical trial evaluated the ability of nitric oxide (NO) to rapidly eradicate nasal SARS-CoV-2 RNA. Adults (18-70 years) with mild symptomatic COVID-19 were randomized, confirmed by laboratory SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR) nasal swab. Randomisation was 1:1, NONS (N = 153) vs placebo (N = 153). NO generated by a nasal spray (NONS) was self-administered six times daily as two sprays per nostril (0⋅45 mL of solution/dose) for seven days. Patients at high risk of illness progression, defined as unvaccinated, ≥ 45 years of age or having comorbidities, were the primary analysis population. Findings: Overall, mean SARS-CoV-2 RNA concentrations (6·96 log10 copies/mL in the NONS group and 7·16 log10 copies/mL in the placebo group) were comparable at baseline. Primary endpoint mean treatment difference SARS-CoV-2 RNA change from baseline to the end of treatment (EOT) was -0·52 copies/mL (SE 0·202, 95% CI -0·92 to -0·12; p = 0·010) with NONS compared to placebo. Secondary endpoint assessments demonstrated a greater proportion of patients receiving NONS (82·8%) cleared SARS-CoV-2 (RT-PCR negative) by EOT compared to placebo (66·7%, p = 0·046), with no virus RNA detected a median of four days earlier compared to placebo (three vs seven days; p = 0·044). Interpretation: Use of NONS in patients recently infected with SARS-CoV-2 accelerates nasal virus clearance. Funding: Funding provided by Glenmark Pharmaceuticals Limited. Study medication provided by SaNOtize.

SELECTION OF CITATIONS
SEARCH DETAIL